RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 4, Pages 806–817 (Mi smj2002)

This article is cited in 9 papers

Cocentralizing and vanishing derivations on multilinear polynomials in prime rings

V. De Filippis

Dipartimento di Scienze per l'Ingegneria e per l'Architettura Sezione di Matematica e Eidomatica Universitá di Messina, Facoltá di Ingegneria, Messina, Italia

Abstract: Let $R$ be a prime ring of characteristic different from 2 and extended centroid $C$ and let $f(x_1,\dots,x_n)$ be a multilinear polynomial over $C$ not central-valued on $R$, while $\delta$ is a nonzero derivation of $R$. Suppose that $d$ and $g$ are derivations of $R$ such that
$$ \delta(d(f(r_1,\dots,r_n))f(r_1,\dots,r_n)-f(r_1,\dots,r_n)g(f(r_1,\dots,r_n)))=0 $$
for all $r_1,\dots,r_n\in R$. Then $d$ and $g$ are both inner derivations on $R$ and one of the following holds: (1) $d=g=0$; (2) $d=-g$ and $f(x_1,\dots,x_n)^2$ is central-valued on $R$.

Keywords: prime ring, derivation, differential identity.

UDC: 512.5

Received: 12.03.2008


 English version:
Siberian Mathematical Journal, 2009, 50:4, 637–646

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026