RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 3, Pages 687–702 (Mi smj1992)

This article is cited in 8 papers

The Cauchy problem for operators with injective symbol in the Lebesgue space $L^2$ in a domain

I. V. Shestakov, A. A. Shlapunov

Institute of Mathematics, Siberian Federal University, Krasnoyarsk

Abstract: Let $D$ be a bounded domain in $\mathbb R^n$ ($n\ge2$) with infinitely smooth boundary $\partial D$. We give some necessary and sufficient conditions for the Cauchy problem to be solvable in the Lebesgue space $L^2(D)$ in $D$ for an arbitrary differential operator $A$ having an injective principal symbol. Furthermore, using bases with double orthogonality, we construct Carleman's formula that restores a (vector-)function in $L^2(D)$ from the Cauchy data given on a relatively open connected set $\Gamma\subset\partial D$ and the values $Au$ in $D$ whenever the data belong to $L^2(\Gamma)$ and $L^2(D)$ respectively.

Keywords: ill-posed Cauchy problem, Carleman's formulas.

UDC: 517.955

Received: 03.12.2007


 English version:
Siberian Mathematical Journal, 2009, 50:3, 547–559

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026