RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 2, Pages 289–291 (Mi smj1957)

The probability that $r$ elements of a rank $n$ free group generate a rank $r$ subgroup

N. V. Buskin

Novosibirsk St. University, Mechanics and Mathematics Department, Novosibirsk

Abstract: Granted the three integers $n\ge2$, $r$, and $R$, consider all ordered tuples of $r$ elements of length at most $R$ in the free group $F_n$. Calculate the number of those tuples that generate in $F_n$ a rank $r$ subgroup and divide it by the number of all tuples under study. As $R\to\infty$, the limit of the ratio is known to exist and equal 1 (see [1]). We give a simple proof of this result.

Keywords: typical subgroups, random subgroups.

UDC: 512.543.12

Received: 16.01.2008
Revised: 22.08.2008


 English version:
Siberian Mathematical Journal, 2009, 50:2, 231–232

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026