RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2008 Volume 49, Number 6, Pages 1411–1419 (Mi smj1928)

This article is cited in 2 papers

Maximal subclasses of local fitting classes

N. V. Savel'eva, N. T. Vorob'ev

Vitebsk State University named after P. M. Masherov

Abstract: A Fitting class $\mathfrak F$ is said to be $\pi$-maximal if $\mathfrak F$ is an inclusion maximal subclass of the Fitting class $\mathfrak S_\pi$ of all finite soluble $\pi$-groups. We prove that $\mathfrak F$ is a $\pi$-maximal Fitting class exactly when there is a prime $p\in\pi$ such that the index of the $\mathfrak F$-radical $G_\mathfrak F$ in $G$ is equal to 1 or $p$ for every $\pi$-subgroup of $G$. Hence, there exist maximal subclasses in a local Fitting class. This gives a negative answer to Skiba's conjecture that there are no maximal Fitting subclasses in a local Fitting class (see [1, Question 13.50]).

Keywords: Fitting class, maximal Fitting subclass, local Fitting class, $\mathfrak F$-radical, Lockett class, Lausch group, Fitting pair.

UDC: 512.542

Received: 25.04.2007


 English version:
Siberian Mathematical Journal, 2008, 49:6, 1124–1130

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026