RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2007 Volume 48, Number 1, Pages 224–235 (Mi smj19)

This article is cited in 5 papers

$c$-Semipermutable subgroups of finite groups

B. Huab, W. Guoab

a Department of Mathematics, University of Science and Technology of China, Hefei, P. R. China
b Department of Mathematics, Xuzhou Normal University, Xuzhou, P. R. China

Abstract: A subgroup is called $c$-semipermutable in $G$ if $A$ has a minimal supplement $T$ in $G$ such that for every subgroup $T_1$ of $T$ there is an element $x\in T$ satisfying $AT_1^x=T_1^xA$. We obtain a few results about the $c$-semipermutable subgroups and use them to determine the structures of some finite groups.

Keywords: finite group, $c$-semipermutable subgroup, maximal subgroups of Sylow subgroups, supersoluble group, $p$-nilpotent group.

UDC: 512.54

Received: 24.08.2005


 English version:
Siberian Mathematical Journal, 2007, 48:1, 180–188

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026