RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2008 Volume 49, Number 3, Pages 668–681 (Mi smj1869)

This article is cited in 1 paper

Distance regularity of Kerdock codes

F. I. Solov'eva, N. N. Tokareva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: A code is called distance regular, if for every two codewords $\mathbf x,\mathbf y$ and integers $i,j$ the number of codewords $\mathbf z$ such that $d(\mathbf x,\mathbf z)=i$ and $d(\mathbf y,\mathbf z)=j$, with $d$ the Hamming distance, does not depend on the choice of $\mathbf x,\mathbf y$ and depends only on $d(\mathbf x,\mathbf y)$ and $i,j$. Using some properties of the discrete Fourier transform we give a new combinatorial proof of the distance regularity of an arbitrary Kerdock code. We also calculate the parameters of the distance regularity of a Kerdock code.

Keywords: distance regular code, Kerdock code, Reed–Muller code, discrete Fourier transform, bent function, distance regular graph, association scheme.

UDC: 519.725

Received: 30.05.2006


 English version:
Siberian Mathematical Journal, 2008, 49:3, 539–548

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026