RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2007 Volume 48, Number 5, Pages 1142–1146 (Mi smj1796)

This article is cited in 2 papers

Isomorphisms of Cayley graphs of a free Abelian group

A. A. Ryabchenko

Moscow Institute of Physics and Technology

Abstract: A group $G$ is called a $CI$-group provided that the existence of some automorphism $\sigma\in\operatorname{Aut}(G)$, such that $\sigma(A)=B$ follows from an isomorphism $\operatorname{Cay}(G,A)\cong\operatorname{Cay}(G,B)$ between Cayley graphs, where $A$ and $B$ are two systems of generators for $G$. We prove that every finitely generated abelian group is a $CI$-group.

Keywords: abelian group, Cayley graph, distance graph.

UDC: 512.541.52+519.175.1

Received: 05.09.2005


 English version:
Siberian Mathematical Journal, 2007, 48:5, 919–922

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026