RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 1993 Volume 34, Number 3, Pages 209–219 (Mi smj1667)

This article is cited in 9 papers

On Noetherian index of differential/algebraic systems. I

V. F. Chistyakov


Abstract: Under consideration is the problem
$$ \Lambda x:=A(t)\frac{d}{dt}x(t)+B(t)x(t)=f(t), \quad t\in T\subseteq R, $$
where $A(t)$ and $B(t)$ are $(n\times n)$-matrices, and $f(t)$ and $x(t)$ stand for known and unknown vector-functions. In particular, some conditions on $A(t)$ and $B(t)$ are specified which ensure that the operator $\Lambda$ is Noetherian. The index is found.

UDC: 517.518

Received: 11.02.1992


 English version:
Siberian Mathematical Journal, 1993, 34:3, 583–592

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026