RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2001 Volume 42, Number 3, Pages 491–506 (Mi smj1438)

This article is cited in 3 papers

On maximal chains in the lattice of module topologies

V. I. Arnautov, K. M. Filippov

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

Abstract: Let $(R,\tau_R)$ be a topological ring and ${}_RM$, a left unitary $R$-module. The set $L(M)$ of all $(R,\tau_R)$-module topologies on ${}_RM$ is a complete modular lattice. A topology $\tau\in L(M)$ is $n$-premaximal if in $L(M)$ there exists an inclusion-maximal chain $\tau_>\tau_1>\dots>\tau_n$ such that $\tau_0$ is the largest element in $L(M)$ and $\tau_n=\tau$. Section 1 contains conditions for existence of 1-premaximal Hausdorff topologies on ${}_RM$. Section 2 contains a description of all $n$-premaximal topologies in the case when $(R,\tau_R)$ is a topological skew field whose topology is determined by a real absolute value.

UDC: 512.556.5

Received: 13.05.1998


 English version:
Siberian Mathematical Journal, 2001, 42:3, 415–427

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026