RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2001 Volume 42, Number 4, Pages 952–963 (Mi smj1437)

This article is cited in 2 papers

On a olvability condition for systems with an injective symbol in terms of iterations of double layer potentials

A. A. Shlapunov

Krasnoyarsk State University

Abstract: We prove existence of the $H^p(D)$-limit for iterations of the double layer potentials constructed from a Hodge parametrix on a smooth compact manifold $X$ (here $D$ is an open connected subset in $X$). The limit is the orthogonal projection of the Sobolev space $H^p(D)$ onto the closed subspace of $H^p(D)$-solutions of some elliptic operator $P$ of order $p\geq 1$. Using this result, we obtain a formula for Sobolev solutions to the equation $Pu=f$ in $D$ if such exist. Solutions are given in the form of series whose summands are iterations of the double layer potentials. We also construct a similar expansion for the Neumann $P$-problem in $D$.

UDC: 517.956+517.55

Received: 21.04.2000
Revised: 27.11.2000


 English version:
Siberian Mathematical Journal, 2001, 42:4, 801–810

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026