RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2001 Volume 42, Number 6, Pages 1402–1407 (Mi smj1396)

This article is cited in 4 papers

On the space of Riemannian metrics on symplectic and contact manifolds

N. K. Smolentsev

Kemerovo State University

Abstract: Let $\mathscr A\mathscr M_\omega$ be the space of all almost Kahlerian smooth metrics on a symplectic manifold $M^2n,\omega$ such that the fundamental form of each metric coincides with $\omega$. It is well known that $\mathscr A\mathscr M_\omega$ is a retractor of the space $\mathscr M$ of all smooth metrics on $M$. We show that $\mathscr M$ is a smooth trivial bundle over $\mathscr A\mathscr M_\omega$. A similar fact holds also in the case of a contact manifold.

UDC: 514.76

Received: 22.04.1999


 English version:
Siberian Mathematical Journal, 2001, 42:6, 1165–1169

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026