RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2003 Volume 44, Number 6, Pages 1226–1238 (Mi smj1250)

This article is cited in 17 papers

Linear bilipschitz extension property

P. Alestaloa, D. A. Trotsenkob, J. Vyaisyalyac

a Helsinki University of Technology
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c University of Helsinki

Abstract: We give a sufficient geometric condition for a subset $A$ of $\mathbb{R}^n$ to enjoy the following property for a fixed $C\geqslant1$ There is $\delta>0$ such that for $0\leqslant\varepsilon\leqslant\delta$, each $(1+\varepsilon)$-bilipschitz map $f\colon A\to\mathbb{R}^n$ extends to a $(1+C\varepsilon)$-bilipschitz map $F\colon\mathbb{R}^n\to\mathbb{R}^n$.

Keywords: bilipschitz mapping, quasi-isometry, approximation, extension of mappings, subsets of euclidean space.

UDC: 517.548.2

Received: 27.06.2003


 English version:
Siberian Mathematical Journal, 2003, 44:6, 959–968

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026