Abstract:
We study the 6-dimensional oriented submanifolds of the Cayley algebra which are endowed with the Hermitian structure induced by 3-folds vector cross products. We prove that the type number of a cosymplectic hypersurface of a 6-dimensional Hermitian submanifold of the Cayley algebra is at most 3 and that a 6-dimensional Kaehler submanifold of the octave algebra has no cosymplectic hypersurfaces with the type number greater than one.
Keywords:Cayley algebra, Hermitian manifold, hypersurface, cosymplectic structure, type number.