Abstract:
W. Michaelis showed for Lie bialgebras that the dual coalgebra of a Lie algebra is a Lie bialgebra. In the present article we study an analogous question in the case of Jordan bialgebras. We prove that a simple infinite-dimensional Jordan superalgebra of vector type possesses a nonzero dual coalgebra. Thereby, we demonstrate that the hypothesis formulated by W. Michaelis for Lie coalgebras fails in the case of Jordan supercoalgebras.
Keywords:Hopf algebra, Lie bialgebra, Jordan bialgebra, Jordan superalgebra, nonassociative coalgebra, local finite dimensionality, dual coalgebra.