RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 7, Pages 71–78 (Mi sm999)

This article is cited in 20 papers

New theorems on the mean for solutions of the Helmholtz equation

V. V. Volchkov

Donetsk State University

Abstract: It is proved that the solutions of the equation $\Delta u+u=0$ are characterized by vanishing of integrals over all balls in $R^n$ with radii belonging to the zero set of the Bessel function $J_{n/2}$. This result enables us to get a solution of the Pompeiu problem on the class of functions of slow growth in terms of approximation in $L(R^n)$ by linear combinations with special radii.

UDC: 517.58

MSC: Primary 35J05, 35B05; Secondary 33C10

Received: 22.07.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 79:2, 281–286

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026