RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 7, Pages 49–70 (Mi sm998)

This article is cited in 22 papers

Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions

V. E. Maiorov


Abstract: Kolmogorov's $(n,\delta)$-widths of the Sobolev spaces $W_2^r$, equipped with a Gaussian probability measure $\mu$, are studied in the metric of $L_q$:
$$ d_{n,\delta}(W_2^r,\mu,L_q)=\inf_{G\subset W_2^r}d_n(W_2^r\setminus G,L_q), $$
where $d_n(K, L_q)$ is Kolmogorov's $n$-width of the set $K$ in the space $L_q$, and the infimum is taken over all possible subsets $G\subset W_2^r$ with measure $\mu(G)\le\delta$, $0\le\delta\le1$. The asymptotic equality
$$ d_{n,\delta}(W_2^r,\mu,L_q)\asymp n^{-r-\varepsilon}\sqrt{1+\frac1n\ln\frac1\delta} $$
with respect to $n$ and $\delta$ is obtained, where $1\le q\le\infty$ and $\varepsilon>0$ is an arbitrary number depending only on the measure $\mu$.

UDC: 517.5

MSC: Primary 41A46, 46E35; Secondary 28C20

Received: 16.04.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 79:2, 265–279

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026