RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 8, Pages 120–140 (Mi sm9956)

On Grothendieck-type duality for spaces of holomorphic functions of several variables

Yu. A. Khoryakova, A. A. Shlapunov

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, Russia

Abstract: We describe the strong dual space $({\mathcal O} (D))^*$ of the space ${\mathcal O} (D)$ of holomorphic functions of several complex variables in a bounded domain $D$ with Lipschitz boundary and connected complement (as usual, ${\mathcal O} (D)$ is endowed with the topology of local uniform convergence in $D$). We identify the dual space with the closed subspace of the space of harmonic functions on the closed set ${\mathbb C}^n\setminus D$, $n>1$, whose elements vanish at the point at infinity and satisfy the Cauchy–Riemann tangential conditions on $\partial D$. In particular, we generalize classical Grothendieck–Köthe–Sebastião e Silva duality for holomorphic functions of one variable to the multivariate situation. We prove that the duality we produce holds if and only if the space ${\mathcal O} (D)\cap H^1 (D)$ of Sobolev-class holomorphic functions in $D$ is dense in ${\mathcal O} (D)$.
Bibliography: 35 titles.

Keywords: duality, spaces of holomorphic functions of several variables.

MSC: Primary 32A37, 32A70; Secondary 32A26

Received: 22.05.2023 and 06.06.2024

DOI: 10.4213/sm9956


 English version:
Sbornik: Mathematics, 2024, 215:8, 1114–1133

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026