RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 3, Pages 21–36 (Mi sm9933)

On uniqueness for series in the general Franklin system

G. G. Gevorkyan

Yerevan State University, Yerevan, Republic of Armenia

Abstract: We prove some uniqueness theorems for series in general Franklin systems. In particular, for series in the classical Franklin system our result asserts that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$ converge in measure to an integrable function $f$ and $\sup_i|S_{n_i}(x)|<\infty$, for $x\notin B$, where $B$ is some countable set and $\sup_i(n_i/n_{i-1})<\infty$, then this is the Fourier–Franklin series of $f$.
Bibliography: 29 titles.

Keywords: Franklin system, Franklin series, general Franklin system, uniqueness theorem, Fourier–Franklin series.

MSC: 42A16, 42A20

Received: 10.05.2023 and 28.09.2023

DOI: 10.4213/sm9933


 English version:
Sbornik: Mathematics, 2024, 215:3, 308–322

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026