Abstract:
It is shown that any finite orthogonal system of functions whose norms in $L_p$ are bounded by 1, where $p>2$, has a sufficiently dense subsystem with lacunarity property in the Orlicz space. The norm of the maximal partial sum operator for this subsystem has a better estimate than it is guaranteed by the classical Menshov-Rademacher theorem for general orthogonal systems.
Bibliography: 17 titles.
Keywords:lacunary subsystems, maximal partial sum operator, Orlicz space