RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 3, Pages 3–20 (Mi sm9922)

On a property of the Rademacher system and $\Lambda(2)$-spaces

S. V. Astashkinabcd, E. M. Semenove

a Samara National Research University, Samara, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
d Bahcesehir University, Istanbul, Turkey
e Voronezh State University, Voronezh, Russia

Abstract: The closed linear span of the Rademacher functions in $L^2[0,1]$ contains functions with arbitrarily large distribution, provided that the ratio of this distribution to the distribution of a standard normal variable tends to zero. A similar result is also obtained for some classes of $\Lambda(2)$-spaces.
Bibliography: 18 titles.

Keywords: Rademacher system, $L^2$-space, rearrangement invariant space, Orlicz space, independent functions, $\Lambda(2)$-space.

MSC: Primary 46B15, 46E30; Secondary 46B09

Received: 15.04.2023 and 05.12.2023

DOI: 10.4213/sm9922


 English version:
Sbornik: Mathematics, 2024, 215:3, 291–307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026