RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 5, Pages 55–74 (Mi sm986)

This article is cited in 7 papers

Fractional iteration of probability generating functions and imbedding discrete branching processes in continuous processes

V. V. Goryainov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: Fractional iteration of probability generating functions is investigated. In particular, conditions on the generating function of a Galton–Watson process that are necessary and sufficient for the process to admit imbedding in a continuous-time homogeneous Markov branching process are obtained. Necessary imbedding conditions formulated in terms of the several initial coefficients of the generating function are also obtained. The collection of all probability generating functions is partitioned, in accordance with a classification of branching processes, into subsets, and the latter are described as convex hulls of their extreme points. A description is given of the infinitesimal generators of distinguished semigroups of probability generating functions.

UDC: 517.54+519.21

MSC: 60J80, 47D07

Received: 24.11.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 79:1, 47–61

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026