RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 12, Pages 76–105 (Mi sm9833)

This article is cited in 2 papers

On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential

L. I. Danilov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia

Abstract: We study the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)$ assuming that the magnetic flux of the homogeneous magnetic field $B>0$ satisfies the condition $(2\pi)^{-1}Bv(K)=Q^{-1}$, $Q\in \mathbb N $, where $v(K)$ is the area of the unit cell $K$ of the period lattice of the potential $V$. For arbitrary periodic potentials $V\in L^2_{\mathrm {loc}}(\mathbb R^2;\mathbb R)$ with zero mean $V_0=0$ we show that the spectrum has no eigenvalues different from Landau levels. For periodic potentials $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)\setminus C^{\infty}(\mathbb R^2;\mathbb R)$ we also show that the spectrum is absolutely continuous.
Bibliography: 23 titles.

Keywords: Landau Hamiltonian, periodic electric potential, spectrum, homogeneous magnetic field.

MSC: 35P05

Received: 12.09.2022 and 20.09.2023

DOI: 10.4213/sm9833


 English version:
Sbornik: Mathematics, 2023, 214:12, 1721–1750

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026