RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 4, Pages 23–40 (Mi sm977)

This article is cited in 14 papers

On linear and multiplicative relations

E. M. Matveev


Abstract: A theorem on the successive minima of lattices corresponding to the integer solutions of systems of linear equations is proved. As a corollary, theorems on the successive minima are obtained for the set of solutions of equations of the form
$$ x_1\ln\alpha_1+\dots+x_n\ln\alpha_n=\ln\beta, \qquad x_1,\dots,x_n\in\mathbb{Z}, $$
for fixed $\alpha_1,\dots,\alpha_n$ in an algebraic number field $\mathbb{K}$ and for variable $\beta\in\mathbb{K}$ equal either to 1 or a root of unity.

UDC: 511

MSC: Primary 11H06, 11J13; Secondary 11P21, 11J86

Received: 24.02.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 78:2, 411–425

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026