RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 2, Pages 72–89 (Mi sm9762)

Cousin complex on the complement to the strict normal-crossing divisor in a local essentially smooth scheme over a field

A. E. Druzhinin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: For any $\mathbb{A}^1$-invariant cohomology theory that satisfies Nisnevich excision on the category of smooth schemes over a field $k$ it is proved that the Cousin complex on the complement $U-D$ to the strict normal-crossing divisor $D$ in a local essentially smooth scheme $U$ is acyclic. This claim is also proved for the schemes $(X-D)\times(\mathbb{A}^1_k-Z_0)\times\dots\times(\mathbb{A}^1_k-Z_l)$, where $Z_0,\dots,Z_l$ is a finite family of closed subschemes in the affine line over $k$.
Bibliography: 32 titles.

Keywords: Gersten conjecture, Cousin complex, motivic cohomologies.

MSC: 14F42, 14F43

Received: 28.03.2022 and 07.11.2022

DOI: 10.4213/sm9762


 English version:
Sbornik: Mathematics, 2023, 214:2, 210–225

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026