RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2022 Volume 213, Number 10, Pages 167–184 (Mi sm9742)

This article is cited in 1 paper

The convex hull and the Carathéodory number of a set in terms of the metric projection operator

K. S. Shklyaevab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Abstract: We prove that each point of the convex hull of a compact set $M$ in a smooth Banach space $X$ can be approximated arbitrarily well by convex combinations of best approximants from $M$ to $x$ (values of the metric projection operator $P_M(x)$), where $x \in X$. As a corollary, we show that the Carathéodory number of a compact set $M \subset X$ with at most $k$-valued metric projection $P_M$ is majorized by $k$, that is, each point in the convex hull of $M$ lies in the convex hull of at most $k$ points of $M$.
Bibliography: 26 titles.

Keywords: metric projection, convex hull, Banach space, smoothness, Minkowski functional, Carathéodory number.

MSC: Primary 41A65; Secondary 52A35, 52A20

Received: 23.02.2022 and 11.05.2022

DOI: 10.4213/sm9742


 English version:
Sbornik: Mathematics, 2022, 213:10, 1470–1486

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026