RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 2, Pages 58–71 (Mi sm9741)

This article is cited in 2 papers

On uniqueness for Franklin series with a convergent subsequence of partial sums

G. G. Gevorkyan

Yerevan State University, Yerevan, Republic of Armenia

Abstract: We show that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$, where $\sup_i{n_i}/(n_{i-1})<\infty$, converge in measure to a bounded function $f$ and $\sup_i|S_{n_i}(x)|<\infty$ for $ x\not\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$.
Bibliography: 24 titles.

Keywords: Franklin system, Franklin series, uniqueness theorem, Fourier-Franklin series.

MSC: 42A16, 42A20

Received: 28.02.2022 and 14.07.2022

DOI: 10.4213/sm9741


 English version:
Sbornik: Mathematics, 2023, 214:2, 197–209

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026