RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2022 Volume 213, Number 10, Pages 90–107 (Mi sm9729)

This article is cited in 3 papers

Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class

A. O. Ivanovabc, A. A. Tuzhilina

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Bauman Moscow State Technical University, Moscow, Russia
c Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Abstract: We show that any bounded metric space can be embedded isometrically in the Gromov-Hausdorff metric class $\operatorname{\mathcal{G\!H}}$. This is a consequence of the description of the local geometry of $\operatorname{\mathcal{G\!H}}$ in a sufficiently small neighbourhood of a generic metric space, which is of independent interest. We use the techniques of optimal correspondences and their distortions.
Bibliography: 22 titles.

Keywords: Gromov-Hausdorff distance, class of all metric spaces, von Neumann-Bernays-Gödel axioms, isometric embedding of a bounded metric space, generic metric space.

MSC: Primary 51F99, 51K05, 53C23; Secondary 54B20

Received: 04.02.2022

DOI: 10.4213/sm9729


 English version:
Sbornik: Mathematics, 2022, 213:10, 1400–1414

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026