RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 2, Pages 87–104 (Mi sm966)

This article is cited in 3 papers

Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the conormal derivative

A. A. Arkhipova


Abstract: Partial regularity of a generalized solution $u\colon\Omega\subset\mathbb R^n\to\mathbb R^N$, $n>2$, $N>1$, of a quasilinear elliptic system is proved under a nonsmooth condition on the conormal derivative. The singular set $\Sigma\subset\overline\Omega$ is described; it is proved that for some $p>2$ the Hausdorff dimension of $\Sigma$ is equal to $n-p$. In the proof essential use is made of a theorem proved earlier by the author on reverse inequalities with surface integrals.

UDC: 517.953

MSC: 35D10, 35J65

Received: 19.11.1991


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 78:1, 215–230

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026