RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 2, Pages 81–109 (Mi sm9656)

John–Löwner ellipsoids and entropy of multiplier operators on rank $1$ compact homogeneous manifolds

A. K. Kushpel

Department of Mathematics, Çankaya University, Ankara, Turkey

Abstract: We present a new method of the evaluation of entropy, which is based on volume estimates for John–Löwner ellipsoids induced by the eigenfunctions of Laplace–Beltrami operator on compact homogeneous manifolds $\mathbb{M}^{d}$ of rank $1$. This approach gives the sharp orders of entropy in the situations where the known methods meet difficulties of fundamental nature. In particular, we calculate the sharp orders of the entropy of the Sobolev classes $W_{p}^{\gamma }(\mathbb{M}^{d})$, $\gamma>0$, in $L_{q}(\mathbb{M}^{d})$, $1 \leq q \leq p \leq \infty$.
Bibliography: 35 titles.

Keywords: John–Löwner ellipsoid, entropy, Riemannian manifold, volume.

MSC: Primary 43A85, 47B06, 52A21; Secondary 42B15, 42B35, 42C05, 43A90

Received: 23.08.2021 and 15.11.2024

DOI: 10.4213/sm9656


 English version:
Sbornik: Mathematics, 2025, 216:2, 210–238

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026