RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2021 Volume 212, Number 1, Pages 119–142 (Mi sm9413)

This article is cited in 19 papers

Approximation of resolvents in homogenization of fourth-order elliptic operators

S. E. Pastukhova

MIREA — Russian Technological University, Moscow

Abstract: We study the homogenization of a fourth-order divergent elliptic operator $A_\varepsilon$ with rapidly oscillating $\varepsilon$-periodic coefficients, where $\varepsilon$ is a small parameter. The homogenized operator $A_0$ is of the same type and has constant coefficients. We apply Zhikov's shift method to obtain an estimate in the $(L^2\to L^2)$-operator norm of order $\varepsilon^2$ for the difference of the resolvents $(A_\varepsilon+1)^{-1}$ and $(A_0+1)^{-1}$.
Bibliography: 25 titles.

Keywords: approximation of resolvents, operator estimate of the homogenization error, corrector, shift method, fourth-order elliptic operator.

UDC: 517.956.8

MSC: Primary 35B27, 35J30, 47A10; Secondary 47F10

Received: 20.03.2020 and 17.04.2020

DOI: 10.4213/sm9413


 English version:
Sbornik: Mathematics, 2021, 212:1, 111–134

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026