RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 12, Pages 143–148 (Mi sm9350)

This article is cited in 1 paper

Proof of a conjecture of Wiegold for nilpotent Lie algebras

A. A. Skutin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: Let $\mathfrak{g}$ be a nilpotent Lie algebra. By the breadth $b(x)$ of an element $x$ of $\mathfrak{g}$ we mean the number $[\mathfrak{g}:C_{\mathfrak{g}}(x)]$. Vaughan-Lee showed that if the breadth of all elements of the Lie algebra $\mathfrak{g}$ is bounded by a number $n$, then the dimension of the commutator subalgebra of the Lie algebra does not exceed $n(n+1)/2$. We show that if $\dim \mathfrak{g'} > n(n+1)/2$ for some nonnegative $n$, then the Lie algebra $\mathfrak{g}$ is generated by the elements of breadth $>n$, and thus we prove a conjecture due to Wiegold (Question 4.69 in the Kourovka Notebook) in the case of nilpotent Lie algebras.
Bibliography: 4 titles.

Keywords: nilpotent Lie algebras, finite $p$-groups, breadth of an element, estimate for the size of the commutator subalgebra.

UDC: 512.554.32

MSC: Primary 17B20; Secondary 17B50

Received: 14.11.2019 and 29.09.2020

DOI: 10.4213/sm9350


 English version:
Sbornik: Mathematics, 2020, 211:12, 1795–1800

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026