RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 11, Pages 72–95 (Mi sm9348)

Limits, standard complexes and $\mathbf{fr}$-codes

S. O. Ivanova, R. V. Mikhailovab, F. Yu. Pavutnitskiya

a Laboratory of Modern Algebra and Applications, Saint Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: For a strongly connected category $\mathscr{C}$ with pairwise coproducts, we introduce a cosimplicial object, which serves as a sort of resolution for computing higher derived functors of $\lim \colon \mathrm{Ab}^{\mathscr{C}}\to \mathrm{Ab}$. Applications involve the Künneth theorem for higher limits and $\lim$-finiteness of $\mathbf{fr}$-codes. A dictionary for the $\mathbf{fr}$-codes with words of length $\leq 3$ is given.
Bibliography: 19 titles.

Keywords: higher limits, cosimplicial resolutions, cohomological finiteness.

UDC: 512.664

MSC: Primary 18A30; Secondary 18G10, 20J05

Received: 11.11.2019 and 05.05.2020

DOI: 10.4213/sm9348


 English version:
Sbornik: Mathematics, 2020, 211:11, 1568–1591

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026