Abstract:
We characterize the three-dimensional Banach spaces in which any Chebyshev set is monotone path-connected. Namely, we show that in a three-dimensional space $X$ each Chebyshev set is monotone path-connected if and only if one of the following two conditions is satisfied: any exposed point of the unit sphere of $X$ is a smooth point or $X=Y\oplus_\infty \mathbb R$ (that is, the unit sphere of $X$ is a cylinder).
Bibliography: 17 titles.