RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1994 Volume 185, Number 9, Pages 153–176 (Mi sm929)

This article is cited in 25 papers

On the theory of epigroups. II

L. N. Shevrin

Ural State University

Abstract: This is a continuation of an earlier paper with the same title. The results of the earlier paper are used to characterize epigroups that are decomposable into a semilattice of nil extensions of rectangular groups, into a band or semilattice of right Archimedean epigroups, or into a band, a semilattice, or a rectangular band of unipotent epigroups. Applications are made to epigroups in which the pseudoinversion operation is an endomorphism, and epigroups in which pseudoinversion is an antiendomorphism are characterized.

UDC: 512.531+512.532

MSC: Primary 20M10, 20M18; Secondary 20M07

Received: 15.10.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 83:1, 133–154

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026