RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 6, Pages 95–106 (Mi sm9282)

This article is cited in 4 papers

A canonical basis of a pair of compatible Poisson brackets on a matrix algebra

A. A. Garazha

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: Given an arbitrary complex matrix $A$ and a generic matrix $X$ we find a canonical basis for the Kronecker part of the bi-Lagrangian subspace with respect to the corresponding Poisson brackets on the Lie algebra $\mathfrak{gl}_n(\mathbb C)$, and also find a system of functions in bi-involution corresponding to this basis. In particular, for nilpotent matrices $A$ we prove that all nonzero functions obtained by applying the Mishchenko-Fomenko argument shift method to the coefficients of the characteristic polynomial form the Kronecker part of the complete system of functions in bi-involution.
Bibliography: 9 titles.

Keywords: bi-Hamiltonian systems, Jordan-Kronecker invariants, argument shift method.

UDC: 512.815.4+514.154

MSC: Primary 17B63; Secondary 53C30

Received: 22.05.2019 and 20.01.2020

DOI: 10.4213/sm9282


 English version:
Sbornik: Mathematics, 2020, 211:6, 838–849

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026