RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1994 Volume 185, Number 9, Pages 109–138 (Mi sm927)

This article is cited in 26 papers

On rapidly convergent iterative methods with complete boundary-condition splitting for a multidimensional singularly perturbed system of Stokes type

B. V. Pal'tsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences

Abstract: This paper is an investigation of a group of iterative methods with complete boundary-condition splitting for solving the first boundary value problem for a system of Stokes type with a small parameter $\varepsilon>0$:
\begin{gather*} -\varepsilon ^2\Delta{\mathbf u}+{\mathbf u}+\operatorname{grad}p={\mathbf f}, \qquad \operatorname{div}{\mathbf u}=0\quad \text {in </nomathmode><mathmode>$\Omega $},
{\mathbf u}|_\Gamma ={\mathbf g}, \qquad \int _\Gamma ({\mathbf g},{\mathbf n}) ds=0, \end{gather*}
</mathmode><nomathmode> where $\mathbf{u}=(u^1(x),\dots,u^n(x))$ is the velocity vector, $p = p(x)$ is the pressure, $\mathbf{f}=(f^1(x),\dots,f^n(x))$ is the field of external forces, and $\mathbf{g}=(g^1(x),\dots,g^n(x))$ is a given value of the velocity vector on the boundary $\Gamma$ of a domain $\Omega$ in the $n$-dimensional Euclidean space $\mathbb{R}^n$.

UDC: 517.946+532.516.5

MSC: Primary 35A35, 35Q30, 35B25, 35A40; Secondary 65N12, 76D07, 76M25

Received: 20.07.1993


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 83:1, 93–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026