RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 11, Pages 118–128 (Mi sm9268)

This article is cited in 1 paper

Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space

R. Mi

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, P. R. China

Abstract: Let $(N^{n+1},g,e^{-f}dv)$ be a complete smooth metric measure space with $M^{n}$ being a complete noncompact $f$-minimal hypersurface in $N^{n+1}$. In this paper, we extend the classical vanishing theorems for $L^2$-harmonic $1$-forms on a complete minimal hypersurface to a weighted manifold. In addition, we obtain a vanishing result under the assumption that $M^n$ has sufficiently small weighted $L^n$-norm of the second fundamental form on $M^{n}$, which can be regarded as a generalization of a result by Yun and Seo.
Bibliography: 26 titles.

UDC: 514.77

MSC: Primary 58C40; Secondary 53C42, 53C21

Received: 20.04.2019 and 07.07.2020

DOI: 10.4213/sm9268


 English version:
Sbornik: Mathematics, 2020, 211:11, 1612–1622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026