RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 3, Pages 158–168 (Mi sm9227)

This article is cited in 1 paper

A connected compact locally Chebyshev set in a finite-dimensional space is a Chebyshev set

K. S. Shklyaev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: Let $X$ be a Banach space. A set $M\subset X$ is a Chebyshev set if, for each $x\in X$, there exists a unique best approximation to $x$ in $M$. A set $M$ is locally Chebyshev if, for any point $x\in M$, there exists a Chebyshev set $F_x\subset M$ such that some neighbourhood of $x$ in $M$ lies in $F_x$. It is shown that each connected compact locally Chebyshev set in a finite-dimensional normed space is a Chebyshev set.
Bibliography: 11 titles.

Keywords: Chebyshev set, metric projection, Chebyshev layer, covering, homotopy.

UDC: 517.982.256

MSC: 46B20

Received: 03.02.2019 and 22.06.2019

DOI: 10.4213/sm9227


 English version:
Sbornik: Mathematics, 2020, 211:3, 455–465

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026