RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 12, Pages 98–119 (Mi sm9194)

This article is cited in 7 papers

Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function

A. Laurinčikas, J. Petuškinaitė

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania

Abstract: We prove a joint discrete universality theorem for Dirichlet $L$-functions concerning joint approximation of a tuple of analytic functions by shifts $L(s+ih\gamma_k, \chi_1),\dots,L(s+ih\gamma_k,\chi_r)$, where $0<\gamma_1<\gamma_2<\dotsb$ is the sequence of imaginary parts of the nontrivial zeros of the Riemann zeta-function, $h$ is a fixed positive number, and $\chi_1,\dots,\chi_r$ are pairwise nonequivalent Dirichlet characters. We use a weak form of Montgomery's conjecture on the correlation of pairs of zeros of the Riemann zeta-function in the analysis. Moreover, we show the universality of certain compositions of Dirichlet $L$-functions with operators in the space of analytic functions.
Bibliography: 31 titles.

Keywords: Montgomery's conjecture on correlation of pairs, Riemann zeta-function, Dirichlet $L$-function, nontrivial zeros, Voronin's theorem, universality.

UDC: 511.331

MSC: 11M06, 11M26

Received: 13.11.2018 and 25.04.2019

DOI: 10.4213/sm9194


 English version:
Sbornik: Mathematics, 2019, 210:12, 1753–1773

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026