RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 7, Pages 94–119 (Mi sm9096)

This article is cited in 10 papers

Smoothness of functions and Fourier coefficients

M. I. Dyachenkoa, A. B. Mukanovbcd, S. Yu. Tikhonovceb

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
c Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
d Kazakhstan Branch of Lomonosov Moscow State University, Astana, Kazakhstan
e Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

Abstract: We consider functions represented as trigonometric series with general monotone Fourier coefficients. The main result of the paper is the equivalence of the $L_p$ modulus of smoothness, $1<p<\infty$, of such functions to certain sums of their Fourier coefficients. As applications, for such functions we give a description of the norm in the Besov space and sharp direct and inverse theorems in approximation theory.
Bibliography: 34 titles.

Keywords: Fourier series, general monotone sequences, moduli of smoothness.

UDC: 517.518.4+517.518.83

MSC: Primary 42A32; Secondary 26A16, 42A16, 46E35

Received: 08.03.2018 and 06.12.2018

DOI: 10.4213/sm9096


 English version:
Sbornik: Mathematics, 2019, 210:7, 994–1018

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026