RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 5, Pages 109–134 (Mi sm9053)

This article is cited in 2 papers

Admissible pairs vs Gieseker-Maruyama

N. V. Timofeeva

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: Morphisms between the moduli functor of admissible semistable pairs and the Gieseker-Maruyama moduli functor (of semistable coherent torsion-free sheaves) with the same Hilbert polynomial on the surface are constructed. It is shown that these functors are isomorphic, and the moduli scheme for semistable admissible pairs $((\widetilde S,\widetilde L),\widetilde E)$ is isomorphic to the Gieseker-Maruyama moduli scheme. All the components of moduli functors and corresponding moduli schemes which exist are looked at here.
Bibliography: 16 titles.

Keywords: moduli space, semistable coherent sheaves, semistable admissible pairs, vector bundles, algebraic surface.

UDC: 512.722+512.723

MSC: 14D20

Received: 19.12.2017 and 19.07.2018

DOI: 10.4213/sm9053


 English version:
Sbornik: Mathematics, 2019, 210:5, 731–755

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026