Abstract:
Morphisms between the moduli functor of admissible semistable pairs and the Gieseker-Maruyama moduli functor (of semistable coherent torsion-free sheaves) with the same Hilbert polynomial on the surface are constructed. It is shown that these functors are isomorphic, and the moduli scheme for semistable admissible pairs $((\widetilde S,\widetilde L),\widetilde E)$ is isomorphic to the Gieseker-Maruyama moduli scheme. All the components of moduli functors and corresponding moduli schemes which exist are looked at here.
Bibliography: 16 titles.