RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 1, Pages 155–174 (Mi sm9019)

This article is cited in 3 papers

Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian

S. E. Pastukhovaa, D. A. Yakubovichb

a MIREA — Russian Technological University, Moscow, Russia
b Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia

Abstract: We study the Dirichlet problem with $p(\,\cdot\,)$-Laplacian in a bounded domain, where $p(\,\cdot\,)$ is a measurable function whose range is bounded away from $1$ and $\infty$. A system of Galerkin approximations is constructed for the so-called $H$-solution or any other variational solution, and energy norm error estimates are proved.
References: 19 items.

Keywords: Galerkin approximants, equations with variable order of nonlinearity, approximation error estimate.

UDC: 517.956.25+517.956.8

MSC: 35J92

Received: 16.10.2017 and 19.05.2018

DOI: 10.4213/sm9019


 English version:
Sbornik: Mathematics, 2019, 210:1, 145–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026