RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 3, Pages 75–130 (Mi sm9018)

This article is cited in 11 papers

Is Zaremba's conjecture true?

I. D. Kan

Moscow Aviation Institute (National Research University), Moscow, Russia

Abstract: For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$.
Bibliography: 25 titles.

Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.

UDC: 511.36+511.216

MSC: 11А55, 11J70, 11Y65

Received: 16.10.2017 and 29.04.2018

DOI: 10.4213/sm9018


 English version:
Sbornik: Mathematics, 2019, 210:3, 364–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026