RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 3, Pages 3–16 (Mi sm9012)

Banach spaces with shortest network length depending only on pairwise distances between points

L. Sh. Burusheva

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: For a real Banach space realising shortest networks for all finite subsets, we prove that a necessary and sufficient condition for the shortest network length to be expressed as a function only of pairwise distances between its points is that the space is either predual to $L_1$ or a Hilbert space. We give a characterization of spaces predual to $L_1$ and Hilbert spaces in terms of shortest networks.
Bibliography: 23 titles.

Keywords: Banach space, shortest network, Steiner point, Lindenstrauss spaces.

UDC: 517.982.256+515.124.4

MSC: 46B04, 46B20

Received: 22.09.2017 and 20.11.2018

DOI: 10.4213/sm9012


 English version:
Sbornik: Mathematics, 2019, 210:3, 297–309

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026