RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 5, Pages 72–108 (Mi sm8978)

This article is cited in 6 papers

Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation

P. I. Naumkin

Center of Mathematical Sciences, National Autonomous University of Mexico, Morelia, Mexico

Abstract: The large-time behaviour of solutions of the Cauchy problem for the modified Kawahara equation
$$ \begin{cases} u_t-\partial_xu^3-\frac a3\partial_x^3u+\frac b5\partial_x^5u=0,&(t,x)\in\mathbb R^2,\\ u(0,x)=u_0(x),&x\in\mathbb R, \end{cases} $$
where $a,b>0$, is investigated. Under the assumptions that the total mass of the initial data $\int u_0(x)\,dx$ is nonzero and the initial data $u_0$ are small in the norm of $\mathbf H^{2,1}$ it is proved that a global-in-time solution exists and estimates for its large-time decay are found.
Bibliography: 19 titles.

Keywords: Kawahara equation, cubic nonlinearity, large-time asymptotics.

UDC: 517.956.8+517.953

MSC: 35B40, 35Q53

Received: 12.06.2017 and 18.01.2019

DOI: 10.4213/sm8978


 English version:
Sbornik: Mathematics, 2019, 210:5, 693–730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026