RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 10, Pages 71–88 (Mi sm8966)

This article is cited in 4 papers

On discrete values of bilinear forms

A. Iosevicha, O. Roche-Newtonb, M. Rudnevc

a Department of Mathematics, University of Rochester, Rochester, NY, USA
b Johannes Kepler University, Linz, Austria
c Department of Mathematics, University of Bristol, Bristol, UK

Abstract: Let $\omega$ be a nondegenerate skew-symmetric bilinear form in the real plane. We prove that for finite a point set $P\subset \mathbb R^2\setminus\{0\}$, the set $T_\omega(P)$ of nonzero values of $\omega$ on $P\times P$, if nonempty, has cardinality $\Omega(N^{96/137})$.
In the special case when $P=A\times A$, where $A$ is a set of at least two reals, we establish the following sum-product type estimates, corresponding to the symmetric and skew-symmetric form $\omega$:
$$ |AA+ AA|= \Omega(|A|^{19/12}) \quad\text{and}\quad |AA-AA|= \Omega\biggl( \frac{|A|^{49/32}}{\log^{3/32}|A|}\biggr). $$
These estimates improve their basic prototypes $\Omega(N^{2/3})$ and $\Omega(|A|^{3/2})$, which readily follow from the Szemerédi-Trotter theorem.
Bibliography: 28 titles.

Keywords: Erdős problems, sum-product estimates, cross-ratio.

UDC: 519.1+514.17

MSC: Primary 52C10; Secondary 11B75

Received: 10.05.2017 and 05.08.2017

DOI: 10.4213/sm8966


 English version:
Sbornik: Mathematics, 2018, 209:10, 1482–1497

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026