RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 5, Pages 145–165 (Mi sm8946)

This article is cited in 3 papers

Graph-manifolds and integrable Hamiltonian systems

K. I. Solodskikh

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study the topology of the three-dimensional constant-energy manifolds of integrable Hamiltonian systems realizable in the form of a special class of so-called ‘molecules’. Namely, for this class of manifolds the Reidemeister torsion is calculated in terms of the Fomenko-Zieschang invariants. A connection between the torsion of a constant-energy manifold and stable periodic trajectories is found.
Bibliography: 17 titles.

Keywords: Reidemeister torsion, Waldhausen graph-manifold, Fomenko-Zieschang invariants, marked molecules, Hamiltonian systems.

UDC: 514.853

MSC: Primary 37J35; Secondary 37C15

Received: 23.03.2017 and 19.02.2018

DOI: 10.4213/sm8946


 English version:
Sbornik: Mathematics, 2018, 209:5, 739–758

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026