RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1994 Volume 185, Number 4, Pages 101–150 (Mi sm893)

This article is cited in 30 papers

On rapidly converging iterative methods with incomplete splitting of boundary conditions for a multidimensional singularly perturbed system of Stokes type

B. V. Pal'tsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences

Abstract: Constructed and investigated are iterative methods for solving the Dirichlet problem for a system with small parameter $\varepsilon >0$:
$$ -\varepsilon^2\Delta\mathbf{u}+\mathbf{u}+\operatorname{grad}p=\mathbf{f},\qquad \operatorname{div}\mathbf{u}=0, $$

leading at each iteration to splitting into a Neumann problem for the pressure and a vector Dirichlet–Neumann problem for the velocities. The case of periodic 'flows' between parallel walls is studied. The fastest variants of the method have the rate of convergence of a geometric progression with ratio of order $\varepsilon$. Also obtained are '$\varepsilon$-coercive' estimates of the solutions of the original problem in Sobolev norms.

UDC: 517.946+532.516.5

MSC: 35A40, 35Q30, 76D05, 65N12

Received: 20.07.1993


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 81:2, 487–531

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026