RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1994 Volume 185, Number 4, Pages 91–100 (Mi sm892)

This article is cited in 5 papers

On sets of nonexistence of radial limits of bounded analytic functions

S. V. Kolesnikov


Abstract: Let $f(z)$ be a function defined in the unit disc $D$: $|z|<1$; $\Gamma$ the unit circle $|z|=1$; $E(f)$ the set of points of $\Gamma$ at which $f(z)$ has no radial limits. In the paper a complete characterization is given of the sets $E(f)$ for bounded analytic functions $f$ in $D$. It is proved that for any $G_{\delta\sigma}$ set $E\subset \Gamma$ of linear measure zero there exists a function $f(z)$, bounded and analytic in $D$, such that $E(f)=E$.

UDC: 517.53

MSC: 30D40

Received: 04.08.1993


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 81:2, 477–485

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026