RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 7, Pages 4–43 (Mi sm8900)

This article is cited in 2 papers

Constrained extremal problems in $H^2$ and Carleman's formulae

L. Baratchart, J. Leblond, F. Seyfert

Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis – Méditerranée, France

Abstract: We consider the extremal problem of best approximation to some function $f$ in $L^2(I)$, with $I$ a subset of the circle, by the trace of a Hardy function whose modulus is bounded pointwise by some gauge function on the complementary subset.
Bibliography: 36 titles.

Keywords: Hardy spaces, extremal problems, approximations in the complex domain, Cauchy problem, inverse boundary problems.

UDC: 517.538.5

MSC: Primary 41A50; Secondary 30D55, 30E10, 35R25

Received: 30.12.2016 and 09.02.2018

DOI: 10.4213/sm8900


 English version:
Sbornik: Mathematics, 2018, 209:7, 922–957

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026